# Rational Number Ideas and Symbols

OUR GOAL REGARDING FRACTIONS
For the next several lessons
we’ll be exploring fractions
and operations with fractions
and the emphasis will be on
understanding the concept
of a fraction rather than
rules for manipulation .

OUR PHILOSOPHY
Research has shown that “procedural knowledge,
such as algorithms for operations, is often taught
without contexts or concepts, implying to the
learner that algorithms are an ungrounded code
only mastered through memorization.
Introducing algorithms before conceptual
understanding is established, or without linking
the algorithm to conceptual knowledge, creates
a curriculum that tends to be perplexing for
children to master or appreciate.”
to misapplication of the algorithm.

MAKING CONNECTIONS
Concepts must be placed in context.
In most cases, working abstractly with
numbers does not foster
understanding unless a foundation has
been previously laid so that a child
can make connections.
Putting concepts into situations with
which children are familiar is crucial.
Meaningful learning depends on
connecting the new concept to the
existing knowledge base in some way.

FACTIONS IN CONTEXT
When we say “½” we are implicitly referring to
½ of something.
Every fraction has a “whole” or base of
reference associated with it. Contexts can help
one to focus on what that “whole” is.
Consider ½ of a 12-inch pizza and ½ of 16-inch
pizza. Are they the same? Different? Explain.

PICTORIAL REPRESENTATIONS
Being aware of the “whole” to which a
fraction refers will be important in working
with fractions.
Pictorial representations of fractions will also
be an important tool to ground student
understanding. The notion of sharing
something equally among people is an
intuitive way to introduce the concept of
fractions.

WHAT ARE RATIONAL NUMBERS?
(WHAT ARE FRACTIONS?)

Rational numbers (fractions)
are those that can be written
as a comparison of two
integers
, a/b, b≠0.

MODELING RATIONAL NUMBERS
Identifying the Whole and Separating It into Equal
Parts (Pictorial Representation)
2/3 : Dividing a whole into equal size parts and
choosing two of those parts
Using Two Integers to Describe Part of a Whole
3 slices of pizza / 8 slices of pizza (whole pizza)
Using Fraction Language
“halves” “thirds” “fourths”

RATIONAL NUMBERS VS. FRACTIONS
A rational number is the relationship
represented by an infinite set of
ordered pairs, each of which
describes the same quantity.
A fraction is a symbol, a/b, where a
and b are numbers and b ≠ 0. Here,
a is the numerator of the fraction
and b is the denominator of the
fraction.

REPRESENTING AND DESCRIBING FRACTIONS
Write definitions and draw pictorial
representations for the following fractions.
1) 1/3
2) 3/5
3) 5/4

TWO TYPES OF FRACTIONS
When the numerator of a fraction
is less than the denominator, the
fraction is called a proper
fraction.

When the numerator of a fraction
is greater than or equal to the
denominator, the fraction is
called an improper fraction.

PAPER-FOLDING ACTIVITY
Take a piece of paper and fold it in half. Think
about the fractions represented by each
rectangle formed.
Fold the paper in half again. What fractions
can be represented now?
Fold the paper in half once again. Discuss
different fraction interpretations of the
rectangles formed.
What is the significance of this activity? (What
concept is being introduced?)

EQUIVALENT FRACTIONS
Two fractions, a/b and c/d, are
equivalent fractions iff ad = bc.
Fundamental Law of Fractions
Given a fraction a/b and a
number c ≠ 0, a/b = ac/bc.

SIMPLIFYING FRACTIONS
A fraction representing a
rational number is in simplest
form
when the numerator and
denominator are both integers
that are relatively prime and the
denominator is greater than
zero.

FAIR SHARE ACTIVITY
A. For each of the following problems, imagine that
you have the given number of brownies to share
equally among a certain number of people. Find out
how many (or how much of a) brownies each person
gets.
Explain your process and reasoning. In any stage of the
process, if you talk about or use a fraction, be sure to
write the expression for the fraction. Be sure to label
any diagrams with appropriate fraction notation. Write
3 people share 4 brownies
4 people share 7 brownies
4 people share 2 brownies
3 people share 2 brownies

FOUR MEANINGS OF ELEMENTARY FRACTIONS
1) Part of a Whole
2 slices of a pizza cut into 8 equal pieces
2) Part of a Group or Set
3/5 of a group of 20 people prefer juice over
milk.
3) Position on a Number Line
A scarf 3 ½ feet long made from a length of silk 5
feet long.
4) Division
1 chocolate cream pie split between four people

Elementary fractions will most likely not deal with
rational values represented by negative fractions,
nor irrational fractions.

DECIMALS
A decimal is a symbol that uses a
base-ten place-value system with
tenths
and multiples of tenths to
represent a number. A decimal
point is used to identify the ones
place.

WAYS TO EXPRESS DECIMALS
Expanded notation
As a fraction
Examples:
1) Express 31.25 in expanded
notation.
2) Write 0.75 and 1.3 as simplified
fractions.

CONVERTING FRACTIONS TO DECIMALS
•Using the Fundamental Law of
Fractions

Multiply the numerator and
denominator by some value that will
produce a product in the denominator
that can be written as a power of 10.

CONVERTING FRACTIONS TO DECIMALS
Examples: Use the Fundamental Law of Fractions
to convert each fraction to a decimal.
1) 3/25
2) 1/4
3) 4/5

CONVERTING FRACTIONS TO DECIMALS
•Using Division

Divide the numerator by the
denominator using the standard
algorithm for division.

CONVERTING FRACTIONS TO DECIMALS
Examples: Use division to
change each fraction to a
decimal.
1) 7/8
2) 9/11

TYPES OF DECIMALS
When using division to change from fractions to
decimals, the remainder determines the type of
decimal.
If the remainder finally becomes 0, then the
resulting decimal has a fixed number of places
and is called a terminating decimal. With a
terminating decimal, the denominator can be
expressed as a power of ten (using the
Fundamental Law of Fractions).
If the remainder will never become 0, then the
decimal in the quotient has a digit or group of
digits that will repeat over and over. This is
called a repeating decimal.
Thus, every rational number can be expressed
as terminating or repeating decimal.

SCIENTIFIC NOTATION
A rational number is expressed in
scientific notation when it is
written as a product where one
factor is a decimal greater than or
equal to 1 and less than 10 and the
other factor is a product of 10.

 Prev Next

Start solving your Algebra Problems in next 5 minutes!

2Checkout.com is an authorized reseller
of goods provided by Sofmath

Attention: We are currently running a special promotional offer for Algebra-Answer.com visitors -- if you order Algebra Helper by midnight of September 17th you will pay only \$39.99 instead of our regular price of \$74.99 -- this is \$35 in savings ! In order to take advantage of this offer, you need to order by clicking on one of the buttons on the left, not through our regular order page.

If you order now you will also receive 30 minute live session from tutor.com for a 1\$!

You Will Learn Algebra Better - Guaranteed!

Just take a look how incredibly simple Algebra Helper is:

Step 1 : Enter your homework problem in an easy WYSIWYG (What you see is what you get) algebra editor:

Step 2 : Let Algebra Helper solve it:

Step 3 : Ask for an explanation for the steps you don't understand:

Algebra Helper can solve problems in all the following areas:

• simplification of algebraic expressions (operations with polynomials (simplifying, degree, synthetic division...), exponential expressions, fractions and roots (radicals), absolute values)
• factoring and expanding expressions
• finding LCM and GCF
• (simplifying, rationalizing complex denominators...)
• solving linear, quadratic and many other equations and inequalities (including basic logarithmic and exponential equations)
• solving a system of two and three linear equations (including Cramer's rule)
• graphing curves (lines, parabolas, hyperbolas, circles, ellipses, equation and inequality solutions)
• graphing general functions
• operations with functions (composition, inverse, range, domain...)
• simplifying logarithms
• basic geometry and trigonometry (similarity, calculating trig functions, right triangle...)
• arithmetic and other pre-algebra topics (ratios, proportions, measurements...)

ORDER NOW!