Comments on Written Assignment 2: Integration by parts, and mixing methods of
integration
A note about comments on written assignments. When it comes to writing
up solu-
tions/comments for writing-intensive assignments, unlike quizzes , I try to take
the Sample Answers
mostly from answers that were actually submitted by students (quoted
anonymously, of course).
These “notable quotes” are great models for others to use to get a sense of good
student writing
on mathematics .
The “notable quote” Sample Answers are shown in quotation marks. Unquoted
material in the
Answers and Comment sections represents my own remarks.
Motivation: We have seen that there is (alas) no Product Rule for
integration that matches the
Product Rule for differentiation. Also, it is generally not true that the
integral of the product of
two functions is the product of their integrals:
However, the techniques called u- substitution and Integration by Parts (IBP)
allow us to integrate
certain particular kinds of products. We will see in this assignment how we can
combine these rules
to expand the variety of functions that we’re able to integrate.
The u-substitution rule
where
,
and a is a constant.
The Integration by Parts rule
1. (10 points) Explain, in your own words, how you can tell when a
product of functions in an
integral can be integrated with a u-substitution, and when it should be
integrated with IBP.
Sample Answer: “It is fairly simple to determine whether to use
u-substitution or IBP (Integra-
tion by Parts) to solve for the integral of a product of functions.
u-substitution is helpful when
the one part of the product is a composition of functions (i.e., f(g(x))) and
the other part of the
product is the derivative of the inside function (i.e., g′(x)). However, when
the two functions in
the product have nothing to do with each other, that is, there is no composition
of functions and
neither part is the derivative of the inside function of the other part, IBP
should be used.”
Comment: It was crucial to mention that for u-substitution, the
product in the integrand has
to contain a composition of functions or one function inside another, multiplied
by the derivative
of the inside function. (A special case of that is when a function is composed
with the identity
function—that is, you don’t do anything to it—and then multiplied by its own
derivative. But
it’s important to note that u-substitution works on composed functions too, as
long as they’re
multiplied by the derivative of the inside one.)
And it wasn’t really enough just to state the “trial-and-error” approach, as
in “try u-sub first and
if it doesn’t work, do IBP”. That’s a good rule of thumb , but we want to know
how to do the
integration more efficiently by understanding the key things about the
integrand.
Grading: Partial credit for explanations that were partly accurate but
not complete.
A combination of IBP and u-substitution can sometimes be used to compute
integrals of functions
we can’t integrate in other ways. For example, we don’t have a standard
antiderivative formula for
arcsin(x) dx, but we can calculate one as follows:
The
IBP rule gives us
And this new integral can be computed using the u-substitution u = 1 − x^2:
Putting the two parts together, we get
2. (20 points) Now use a similar approach to find antiderivative
formulas for the following functions:
Sample Answer: “First, IBP can be used. Let u = arctan(x) and
and v = x. Using the IBP rule we get:
.
The second
part of the equation can be computed with u-substitution. We let
.
So du = 2x dx,
.
We sub this in to get:
Then we put both parts together to get
Sample Answer: “This is integrated using IBP [. . .] According to the
acronym LIATE ln(x) is
used for u.
When substituting for
Comment: Most respondents had little trouble with this, and there were
many other equally good
solutions given . In part (a), watch out for the re-substitution step at the end:
you don’t want to
use your original u = arctan(x) from the IBP instead of u = 1 + x^2 from the
u-substitution in the
final answer!
Note, by the way, that you don’t actually need the absolute-value signs in
the ln (1 + x^2) term in
part (a), since 1+x^2 will always be positive, and thus equal to its absolute
value. And there should
be no absolute- value signs in the x ln(x) term in part (b), because this term
isn’t derived from
integrating
Grading: Ten points for each of the integrals.
3. (25 points) Find each of the following indefinite integrals, stating at
each step what method you
need to use and why you need to use it. (For instance: “Now I have to use
Integration by Parts
because I have the product of one function times the derivative of another. . .
now I can just integrate
directly because this is one of the standard derivatives. . .” and so forth.) A
good explanation of
what you think you need to do and why, even if you can’t figure out how to make
the formula
come out right, is worth a good chunk of credit!
where
a is any constant. (Hint: Start with a u-substitution and then do IBP.)
Sample Answer: “Start out with u-sub and reincorporate into integral.
From previous problem we have generalized the answer to the integral ln(x) dx,
hence ln(u) du
equals u ln(u) − u + C.
Substitute for u to get answer:
You can also write because a is a constant:
(Hint: Start with the u-substitution
)
Comment: You had to be careful about the order of
the steps in part (b); using a different variable
at first (a p-substitution in the sample answer) made it easier to avoid mixing
up your u-functions
at the end.
In part (a), you could skip the initial u-substitution if
you were comfortable doing IBP directly
on the composed function ln(x + a). But again, if you did do a u-substitution
you needed to keep
track of which u is which.
Grading: Ten points for part (a) and fifteen for
part (b).
Overall grade: Add up your point scores from each
problem. That is your total raw score: use
the table below to convert it to your letter grade for this quiz. (Note that no
points are taken off
if your homework is marked “1DL”, that is, “one day late”, since you are allowed
to hand in one
assignment one day late with no penalty at any point you choose during the term.
If you have been
marked as “1DL” for this assignment, you must hand in all future assignments by
the official due
date.)
Raw score (total points) |
Grade |
53–55 |
A |
50–52 |
A- |
47–49 |
B+ |
44–46 |
B |
41–43 |
B- |
39–40 |
C+ |
36–38 |
C |
33–35 |
C- |
28–32 |
D |
Note: Half-point scores are rounded up to the nearest
whole number ; so if you got a total point
score of, say, 52.5, it counts as an A, not an A-.