Your Algebra Homework Can Now Be Easier Than Ever!

SYLLABUS FOR QUANTITATIVE METHODS

Class 4. Determinants and the Matrix Inverse   39

4.1 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 The volume of a matrix . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Determinants of small matrices . . . . . . . . . . . . . . . . . 41

4.2 Properties of determinants . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 The matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Construction of the inverse . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Properties of inverses . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Elementary decomposition . . . . . . . . . . . . . . . . . . . . 47
4.4 The adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Class 5. Eigenpairs   51

5.1 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1 The characteristic polynomial . . . . . . . . . . . . . . . . . . 51
Application: Markov chains . . . . . . . . . . . . . . . . . . . . . . . 53
Application: Google’s PageRank . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Properties of eigenvalues and eigenvectors . . . . . . . . . . . 54

5.2 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Uncoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A metaphor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Quadratic forms and sign definiteness . . . . . . . . . . . . . . . . . . 59
5.3.1 Tests for sign definiteness . . . . . . . . . . . . . . . . . . . . 59

III BASIC TOPOLOGY   61

Class 6. Topological Set Properties   61

6.1 Distance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Openness and closedness . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.1 Open balls and open sets . . . . . . . . . . . . . . . . . . . . . 62
6.2.2 Relative openness . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.3 Unions and intersections of open sets . . . . . . . . . . . . . . 64
6.2.4 Closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.5 Interior, closure, and boundary of a set . . . . . . . . . . . . . 66

6.3 Compactness and connectedness . . . . . . . . . . . . . . . . . . . . . 67
6.3.1 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Class 7. Limits and Convergence 71

7.1 Limit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.1 Convergence of sequences . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Cauchy sequences . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 The Bolzano-Weierstrass Theorem . . . . . . . . . . . . . . . . . . . . 75

7.4 Functions and their limits . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.1 Properties of functions . . . . . . . . . . . . . . . . . . . . . . 77
7.4.2 Function limits . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Class 8. Continuity 81

8.1 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1.1 Continuity and function limits . . . . . . . . . . . . . . . . . . 81
8.1.2 Continuity and sequence limits . . . . . . . . . . . . . . . . . 82

8.2 Continuity and open sets . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.1 Image and inverse image . . . . . . . . . . . . . . . . . . . . . 83
8.2.2 An alternative definition of continuity . . . . . . . . . . . . . . 84
8.2.3 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.3 The Weierstrass Theorem . . . . . . . . . . . . . . . . . . . . . . . . 86

8.4 Semi-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

IV CALCULUS   91

Class 9. Differentiation   91

9.1 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.1.1 Some rules of differentiation . . . . . . . . . . . . . . . . . . . 92
9.1.2 Differentiability and continuity . . . . . . . . . . . . . . . . . 94
9.1.3 Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2 Linear approximations and applications . . . . . . . . . . . . . . . . . 96
9.2.1 Tangents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2.2 Chain rule, product rule , quotient rule . . . . . . . . . . . . . 98
9.2.3 L’Hˆopital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.3 Differentiation of implicit and inverse functions . . . . . . . . . . . . 100
9.3.1 Implicit functions . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3.2 Implicit differentiation and differentials . . . . . . . . . . . . . 101
9.3.3 Inverse functions . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4 The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . 104

Class 10. Multivariate Calculus 105

10.1 Functions of several variables . . . . . . . . . . . . . . . . . . . . . . 105
10.1.1 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.1.2 The Jacobian derivative . . . . . . . . . . . . . . . . . . . . . 106

10.2 Linear approximations and applications . . . . . . . . . . . . . . . . . 107
10.2.1 Tangent plane of a graph . . . . . . . . . . . . . . . . . . . . . 107
10.2.2 The chain rule in general . . . . . . . . . . . . . . . . . . . . . 108
10.2.3 Directional derivatives . . . . . . . . . . . . . . . . . . . . . . 110

10.3 Implicit functions of several variables . . . . . . . . . . . . . . . . . . 112
10.3.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.3.2 The Implicit Function Theorem . . . . . . . . . . . . . . . . . 114
10.3.3 Level curves and gradients . . . . . . . . . . . . . . . . . . . . 114
Application: Comparative statics . . . . . . . . . . . . . . . . . . . . 116

Class 11. Higher- Order Derivatives 119

11.1 Functions of one variable . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.1.1 Concavity and convexity . . . . . . . . . . . . . . . . . . . . . 120

11.2 Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.2.1 Quadratic approximations . . . . . . . . . . . . . . . . . . . . 122
11.2.2 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.2.3 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.3 Functions of several variables . . . . . . . . . . . . . . . . . . . . . . 125
11.3.1 The Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.3.2 Young’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.3.3 Quadratic approximations of multi- variable functions . . . . . 127
11.3.4 Concavity and convexity in several variables . . . . . . . . . . 128

Class 12. Integration and Differential Equations 131

12.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.1.1 The Riemann integral . . . . . . . . . . . . . . . . . . . . . . 131
12.1.2 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.1.3 The Fundamental Theorems of Calculus . . . . . . . . . . . . 134
12.1.4 Rules of integration . . . . . . . . . . . . . . . . . . . . . . . . 135
12.1.5 Integration by parts . . . . . . . . . . . . . . . . . . . . . . . 135

12.2 Integration in higher dimensions . . . . . . . . . . . . . . . . . . . . . 136
12.2.1 The rectangular case . . . . . . . . . . . . . . . . . . . . . . . 136
12.2.2 The non-rectangular case . . . . . . . . . . . . . . . . . . . . . 138

12.3 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
12.3.1 Homogenous linear first -order differential equations . . . . . . 140
12.3.2 Non-homogenous differential equations . . . . . . . . . . . . . 140

V OPTIMIZATION THEORY   143
Class 13. Unconstrained Optimization   143

13.1 Maxima and minima . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13.1.1 Global extrema . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13.1.2 Local extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.2 Finding interior extrema . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.2.1 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . 145
13.2.2 Sufficient conditions . . . . . . . . . . . . . . . . . . . . . . . 146
13.2.3 The nth-derivative test . . . . . . . . . . . . . . . . . . . . . . 147

13.3 The Envelope Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Class 14. Constrained Optimization 153

14.1 Optimization subject to an equality constraint . . . . . . . . . . . . . 153
14.1.1 Translation into an unconstrained problem . . . . . . . . . . . 153
14.1.2 The tangency condition . . . . . . . . . . . . . . . . . . . . . 155
14.1.3 The Lagrangean . . . . . . . . . . . . . . . . . . . . . . . . . . 157

14.2 Optimization subject to an inequality constraint . . . . . . . . . . . . 158
14.2.1 Conditions for an optimum . . . . . . . . . . . . . . . . . . . . 158
14.2.2 The Kuhn-Tucker Theorem . . . . . . . . . . . . . . . . . . . 160
14.2.3 Interpretation of the multiplier . . . . . . . . . . . . . . . . . 162
Application: Profit maximum subject to a technological constraint . . 163

14.3 Multiple constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Class 15. Dynamic Optimization   167

15.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
15.1.1 Intertemporal constraints . . . . . . . . . . . . . . . . . . . . . 167
15.1.2 Continuous time . . . . . . . . . . . . . . . . . . . . . . . . . 168
15.1.3 Example: The consumption-savings problem . . . . . . . . . . 169

15.2 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
15.2.1 Conditions for a dynamic optimum . . . . . . . . . . . . . . . 171
15.2.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 172
15.2.3 Intertemporal arbitrage and the Maximum Principle . . . . . . 173
Application: Life cycle savings profile . . . . . . . . . . . . . . . . . . 174

15.3 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . 176
15.3.1 The Bellman equation . . . . . . . . . . . . . . . . . . . . . . 176
15.3.2 The Principle of Optimality . . . . . . . . . . . . . . . . . . . 177

Index   179

Prev Next

Start solving your Algebra Problems in next 5 minutes!

Algebra Helper
Download (and optional CD)

Only $39.99

Click to Buy Now:


OR

2Checkout.com is an authorized reseller
of goods provided by Sofmath

Attention: We are currently running a special promotional offer for Algebra-Answer.com visitors -- if you order Algebra Helper by midnight of December 22nd you will pay only $39.99 instead of our regular price of $74.99 -- this is $35 in savings ! In order to take advantage of this offer, you need to order by clicking on one of the buttons on the left, not through our regular order page.

If you order now you will also receive 30 minute live session from tutor.com for a 1$!

You Will Learn Algebra Better - Guaranteed!

Just take a look how incredibly simple Algebra Helper is:

Step 1 : Enter your homework problem in an easy WYSIWYG (What you see is what you get) algebra editor:

Step 2 : Let Algebra Helper solve it:

Step 3 : Ask for an explanation for the steps you don't understand:



Algebra Helper can solve problems in all the following areas:

  • simplification of algebraic expressions (operations with polynomials (simplifying, degree, synthetic division...), exponential expressions, fractions and roots (radicals), absolute values)
  • factoring and expanding expressions
  • finding LCM and GCF
  • (simplifying, rationalizing complex denominators...)
  • solving linear, quadratic and many other equations and inequalities (including basic logarithmic and exponential equations)
  • solving a system of two and three linear equations (including Cramer's rule)
  • graphing curves (lines, parabolas, hyperbolas, circles, ellipses, equation and inequality solutions)
  • graphing general functions
  • operations with functions (composition, inverse, range, domain...)
  • simplifying logarithms
  • basic geometry and trigonometry (similarity, calculating trig functions, right triangle...)
  • arithmetic and other pre-algebra topics (ratios, proportions, measurements...)

ORDER NOW!

Algebra Helper
Download (and optional CD)

Only $39.99

Click to Buy Now:


OR

2Checkout.com is an authorized reseller
of goods provided by Sofmath
Check out our demo!
 
"It really helped me with my homework.  I was stuck on some problems and your software walked me step by step through the process..."
C. Sievert, KY
 
 
Sofmath
19179 Blanco #105-234
San Antonio, TX 78258
Phone: (512) 788-5675
Fax: (512) 519-1805
 

Home   : :   Features   : :   Demo   : :   FAQ   : :   Order

Copyright © 2004-2024, Algebra-Answer.Com.  All rights reserved.